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Abstract. This paper will present a new method of adaptively constructing smoothers based on Local Sensitivity
Analysis (LSA) for multigrid methods. The method can be used in the context of both geometric and algebraic multigrid
methods. It is suitable for both constant and variable coefficient problems. Furthermore, the method can be applied to
systems arising from both scalar and coupled system partial differential equations (PDEs), as well as linear systems not
arising from PDEs. The simplicity of the method will allow it to be easily incorporated into existing multigrid codes
while providing a powerful tool for adaptively constructing smoothers tuned to the problem.
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1. Introduction. This paper presents a new method that uses Local Sensitivity Analysis (LSA)
to identify blocks of variables in a linear system that are strongly coupled. With such information
regarding the coupling of variables, we construct stationary block iterative methods that can be used,
for instance, as smoothers in multigrid methods. The smoothers so constructed can be used in the
context of both geometric and algebraic multigrid methods. The method is suitable for both constant
and variable coefficient problems. Furthermore, the method has been applied to systems arising from
both scalar and coupled system partial differential equations (PDEs), as well as linear systems not
arising from PDEs. The simplicity of the method will allow it to be easily incorporated into existing
multigrid codes. Furthermore, it is possible to adaptively vary the size and strength of the blocks
leading to the construction of a parametrized family of block iterative smoothers which can be tuned
to the problem based on efficiency or convergence criteria.

1.1. Related work. Previously, much effort has been devoted to developing algorithms for ma-
trix reorderings. Much of the motivation for this work came from research on direct solvers. Examples
include the Nested Dissection algorithm [12], the multiple minimum degree algorithm [19], and inde-
pendent set reorderings [18]. Similar ideas for matrix partitioning have also been used for enabling
parallel processing of large linear systems [15]. The main focus in the case of direct solvers was to
develop algorithms that minimize fill-in during matrix factorizations. In the case of parallel processing
the focus was on identifying blocks of variables that were independent from each other and hence
enabling asynchronous processing. Related work in the context of multilevel algebraic preconditioners
[7, 24] report that the formation of dense diagonal blocks using the matrix reorderings appeared to
have a beneficial effect on the convergence rate of block iterative methods. Further, [1] presents a
block ordering method based on combinatorial considerations that formed dense variable sized diag-
onal blocks. Numerical tests presented there showed that the block iterative methods based on the
reorderings performed better in general. Parter [22] provides an example of “multiline” iterative meth-
ods for systems arising from discretizations of elliptic partial difference equations (PDEs) and Varga
[30] provides references to block iterative methods for elliptic difference equations and theory for such
methods in the case of M -matrices and Stieljes matrices. In the context of multigrid methods Yavneh
[31] and Brandt [5, 4] provide guidance for constructing multigrid smoothers for complicated PDE
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(a) (b) (c) 

Fig. 2.1. Error of an elliptic problem in 3 stages of a multigrid cycle. (a) Initial error on fine grid. (b) Smoothed
error on fine grid after relaxation. (c) Smoothed error approximated by the coarse grid.

systems. Smoothers based on Sparse Approximate Inverse techniques are developed in [26] and [8].
The methods described in this paper differ from the existing methods as they are based on sensitivity
analysis and offer the ability to adaptively construct a whole family of smoothers that differ in con-
vergence rates and efficiency. The smoothers developed in [26, 8] can be adapted, but this is done
by altering the sparsity pattern and the degree of fill-in allowed, and not based on the formation of
strongly connected blocks. Adaptivity of the smoothers is an important feature which is being utilized
in ongoing research by the authors to construct fully adaptive multigrid methods. We note that recent
work on energy-based coarsening [6] for algebraic multigrid methods is closely related and the criteria
for coarsening proposed there can be derived as a special case of the general methodology presented
here. Future work will address the feasibility of using the criteria developed in this paper for coarsening
in adaptive AMG methods.

1.2. Outline. In the following section of this paper, a review of geometric and algebraic multigrid
methods presents a broad context for the applicability of the methods of this paper for a multigrid
process. Further, the section outlines how previous research in geometric methods has often required
specially designed smoothers while research on algebraic methods have concentrated on altering the
process of constructing coarse-grid components as smoothing is generally fixed to a simple relaxation
scheme. Section 3 introduces the use of LSA for identifying strong coupling between variables. Section
3.7 introduces the adaptive algebraic smoother with Section 4 presenting numerical results for scalar
and coupled system PDEs and to systems not generated from PDEs.

2. Review of Multigrid. Periodically in this paper, the potential role of adaptive algebraic
smoothers in multigrid methods will be discussed. As such, we begin with a brief review of multigrid.

2.1. Geometric Multigrid (GMG). Multigrid methods solve discrete linear systems that often
arise from discretizing PDEs. Specifically, such methods seek the solution x ∈ <n to the linear system

Ax = f , (2.1)

where A is an n × n global matrix for a PDE. It is assumed in this paper that A is nonsingular, i.e.,
a unique solution, x, to (2.1) exists. The multigrid iterative cycle begins with an initial guess x0 that
yields the error e0 = A−1f − x0.

The first step toward this goal is to perform relaxation (or smoothing) on (2.1). However, after
only a few steps of smoothing, continued iterations of relaxation would result in degradation of the
convergence factor as only those components of the error that are not efficiently reduced by smoothing
remain. Instead, GMG now attempts to correct the fine-grid approximation by a coarse-grid approxi-
mation to this error. This is done by first forming the residual, rj = f −Axj , and posing the residual
equation:

Aej = rj . (2.2)
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(Here j refers to the j-th iteration of the smoother.) GMG attempts now to solve the residual equation.
While we understandably expect e0 to contain both smooth and oscillatory components as seen in

Figure 2.1 (a), carefully chosen relaxation schemes quickly dampen the oscillatory components of the
error leaving only smooth components (Figure 2.1 (b)). As such, ej can be represented on a coarser
scale. This is done by forming the coarse-grid version of residual equation (2.2) and solving, resulting
in a coarse-grid approximation to ej , as seen in Figure 2.1 (c). This coarse-grid approximation is
interpolated to the fine grid and used to correct the approximation xj , effectively reducing the smooth
components of the error. This is the basis of what is called coarse-grid correction.

The coarse-grid problem is not solved directly, but by a combination of smoothing and correction
from still coarser grids. One full application of this recursive procedure constitutes a multigrid cycle.
Well designed multigrid methods must sufficiently reduce all components of the error by a combination
of fine-grid relaxation and coarse-grid correction. While sometimes separated for purposes of discussion,
smoothing and coarse-grid correction are partners that combine to create the efficiency and power of
the multigrid cycle: multigrid methods must be designed so that both mechanisms complement each
other’s efforts. A properly designed cycle reduces all error by a factor independent of the size of the
fine grid problem, giving GMG its optimal solution time.

2.2. Algebraic multigrid. GMG methods are scalable for many regular-grid problems. Yet,
they can be difficult to develop for the large unstructured grids that many simulations require. Alge-
braic Multigrid (AMG) attempts to overcome this difficulty by abstracting multigrid principles to an
algebraic level so that the algorithm is more automatic and robust. AMG is effective on a large class
of problems (see, e.g., [11, 23]), especially scalar elliptic partial differential equations. Still, important
applications exist, many that lie in system PDEs and nonsymmetric problems, that are difficult for
AMG to treat. It is important to note that iterative methods in general have failed to achieve full
optimality for such problems.

AMG differs from GMG in that it attempts to choose components of the multigrid process au-
tomatically with only knowledge of the algebraic system. AMG methods typically fix the smoother,
choosing for example Gauss-Seidel as the smoother on all grid levels. AMG then attempts to alge-
braically choose coarse-grid correction components [23, 13, 10] during a setup phase prior to the actual
solution phase. In the context of AMG, smooth error need not necessarily be geometrically smooth.
Instead, algebraically smooth error remaining after smoothing simply refers to error, e, that is not
significantly reduced after applying the smoother, S, i.e., Se ≈ e ([27], Appendix A).

2.3. A role for an automated, problem-dependent smoother in GMG and AMG. While
the necessary components of a multigrid cycle are well-defined as detailed above, identifying how to
build such components that will lead to an efficient iterative method is not always so clear. For example,
other than for the simplest cases, it can be necessary to construct problem dependent components for
smoothing and/or coarse-grid correction. GMG methods typically fix the hierarchy of coarse grids
in advance, limiting the coarse-grid components that can be modified. Hence, in the design of a
GMG solvers the burden shifts towards the design of smoothers that must eliminate oscillatory error
components that fixed coarse-grid correction components cannot tackle.

In contrast, an AMG algorithm contains the setup phase which has the burden of producing a
coarsening process that approximates error that the fixed smoothing scheme cannot reduce. Fixing
the smoother has meant that in general AMG methods have trouble when used for solving coupled
PDE systems that may have strong intervariable couplings due to failure of the smoother to converge,
requiring the design of a problem dependent smoother by a multigrid expert. By automating the
process of smoother selection we hope to shift some of the burden of an efficient AMG algorithm
from coarse-grid correction to smoothing. While not addressed in this paper and the subject of future
research, we note that our methods can potentially be also used to develop algorithms for the coarsening
process in AMG.

This paper introduces a method to automatically create block smoothers, which refers to relax-
ation schemes where a set of variables are updated simultaneously in the relaxation scheme. It is
possible to develop block versions of the Jacobi and Gauss-Seidel relaxation schemes as well as other
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variants depending on the order of the updates of the blocks. Line smoothers are examples of block re-
laxation schemes which are effective when anisotropies align along grid directions for scalar problems.
Alternating direction line smoothers are used when anisotropies do not align along grid directions.
Segment smoothers refer to smoothers that form blocks on segments of lines. Nodal smoothers update
a coupled set of variables at a node when discretizing a system PDE. Smoothers based on ILU are also
possible. As is evident, a wide variety of smoothers for GMG methods that tackle different problem
dependent characteristics have been developed. We refer to [27] for a more detailed description of these
options and references. For complex geometries and unstructured grids constructing such smoothers
is not easy. In general, knowledge and detailed analysis of the physical system by a multigrid expert
has been required to determine an appropriate smoother other than for the simplest problems. Other
than [31], we are unaware of methods that attempt to automatically construct a suitable smoother for
a given problem, which is the goal of the methods introduced in this paper.

3. Determining Strong Coupling with Sensitivity Analysis. In this section, we outline how
sensitivity analysis is used to identify strong coupling between variables in a linear system. Again,
consider the linear system (2.1). Component-wise the solution can be written as:

xi =
n∑

j=1

(A−1)ijfj for i = 1, 2, . . . n.

[TODO: Bobby, I changed this as I believe i is to be fixed which wasn’t clear to me in the previous
version of this equation. Further, the comment is made below that this makes it clear that fj has a
strong effect on xi relative to the size of the corresponding element in the inverse. Doesn’t this assume
a geometrically smooth f? That is, isn’t this assuming relatively close values in f? If f is highly
oscillatory, then this might not be the case. This is similar motivation to how AMG justifies choosing
strong connections from the row. However, AMG makes the point on uj rather than fj . Should we
note something here? In a sense it is implicit in the comment but the conclusion, to me, is only clear
upon such an assumption.Tim, I’ve got to think about this one. I’m not quite sure how to reword. As
I understand it you are thinking of the cumulative effect of all the fjs on xi. I am more thinking of
a single value fj . If fj is to have any significant effect on xi(quite independent from any of the other
nodes), then the coefficient A−1

ij has to be large. Am I making any sense? Another way of presenting
this might be to consider perturbations δfj to fj with all of them bounded by the same constant ε.
Then the net effect on xi is given by

∑n
j=1 A−1

ij δfj . Then the perturbation due to j is only significant
if A−1

ij is large in magnitude relative to the other coefficients. I may be saying the same thing you are
but in a very different way. Or maybe I’m missing something here. I was not aware the AMG guys
have a similar analysis but it would be helpful if you gave me a reference]

From this representation it is clear that a value, fj , will have a strong effect on xi if the magnitude
of (A−1)ij or an appropriate measure that takes into account the magnitude of (A−1)ij is large. Note
that for a given i, the coefficients, (A−1)ij , 1 ≤ j ≤ n, can be determined by solving the linear system,

Atu = ei, (3.1)

where ei is the i-th canonical vector. Then, u is the i-th row of A−1 with uj = (A−1)ij , 1 ≤ j ≤ n. Note
that in practice the above system is not solved exactly but instead local approximations are used. The
question naturally arises whether or not, for a given i, directly using the magnitudes of the (A−1)ij ’s or
approximations thereof is sufficient as a measure of strength of connection? It appears from numerical
experiments that this is indeed sufficient (with appropriate scaling), for symmetric positive definite
systems, but it tends to fail for non-symmetric systems. We do not report on those negative results
in this paper, but instead present analysis and numerical experiments for a strength of connection
measure based on sensitivity analysis that is suitable for both symmetric and non-symmetric systems.
[TODO: Bobby, I have removed the term “strong connection” from the previous pages of the paper
as we are, as you know, looking to identify strong couplings that later form our blocks. However, I
have kept the term “strong connection” in this paragraph as it seems to be more appropriate given the
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exposition before the use of the term. What do you think?(works for me) Also, I’m unclear as to the
meaning of the last 2 sentences. The next to last sentence seems to say that our work doesn’t work
for nonsymmetric systemsI guess it came across wrong. I am referring to the measure by Brannick
etal and the experiments you ran, however I am reluctant to call it out explicitly. In the symmetric
case our measure defaults to theirs and both work. But in the nonsymmetric case ours is more robust
and continues to work while theirs begins to break down. I hope it is clearer now, if not, let me know.
We will see that it does for PageRank. However, the last sentence seems to sound like we think it will
work for such systems. I’m somehow missing the intent of these two sentences. Can you help reword
them?]

3.1. Motivating sensitivity analysis globally. To do this, first consider a related problem:
find the effect on ui of perturbations in elements of A. That is, we are interested in the rate of change
in ui for a change in an element of A. Here, ui refers to the i-th entry of the solution vector, u, of (3.1).
On a global scale, one could computationally estimate such a derivative by perturbing an element in
A and calculate the resulting solution uncovering the change in ui for each such perturbation. This
brute-force method demands solving such a linear system for all perturbations in A. Instead, an
additional problem, the adjoint problem, is introduced which produces the desired derivatives with
marked computational savings.

Given a linear system,

By = g, (3.2)

where B is nonsingular, let p denote a scalar parameter for which we are interested in finding ∂yi/∂p;
p could be an entry, Bij , of B, or gi for that matter (although this choice will not be utilized).
Differentiating the linear system with respect to p produces:

B
∂y
∂p

=
∂g
∂p
− ∂B

∂p
y. (3.3)

To solve for ∂y/∂p, consider the associated adjoint problem, BT v = c, which easily is rewritten as

cT = vT B. (3.4)

Note, for symmetric systems the adjoint system becomes Bv = c, where c is currently unspecified.
We are interested in changes to a cost functional J(y) = cT · u. Differentiation gives

∂J(y)
∂p

= cT ∂y
∂p

+
∂cT

∂p
y

= vT B
∂y
∂p

+
∂cT

∂p
y

= vT

(
∂g
∂p
− ∂B

∂p
y
)

+
∂cT

∂p
y

(3.5)

Therefore, finding ∂J(y)/∂p involves solving the adjoint equation (3.4) to find v and the linear system
(3.2) to find y. We now specialize this in the context of our application of these ideas. Choosing
B = AT and g = ei in (3.2) implies y = u, the solution vector of (3.1). We must now decide 1) what
to use as an appropriate J(u) and p, and 2) how to localize the method.

To determine strong couplings with variable i, we are interested in the change in ui given a change
in AT . Therefore, we take c = ei where ei is the canonical basis vector. As such, J(u) = ui. Next,
we will take p = Ajj , which will find the change in ui if the value of Ajj were perturbed. Another
choice for p is Aij . Such a choice was explored and found to be a less robust indicator of strength in
couplings.

With such choices determined, we can simplify (3.5). In particular, ∂g/∂p and ∂cT /∂p equal 0.
So, with substitutions

∂ui

∂Ajj
= −vT

(
∂AT

∂ajj
u
)

= −vjuj .
(3.6)
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Now, vj = (A−1)ji and uj = (A−1)ij , therefore

∂ui

∂Ajj
= −(A−1)ij(A−1)ji. (3.7)

Note that this is a symmetric measure of strength between nodes i and j. For symmetric systems,
(A−1)ij = (A−1)ji, and the measure is based only on (A−1)ij . The connection of this measure to
existing measures for symmetric systems is explained further in the next subsection. In practice, a
normalized sensitivity is used, which is:

Si
j =

p

J(u)
∂J(u)

∂p

=
Ajj

ui
(−vjuj) .

(3.8)

Note that Si
j scales the measure to account for variations in scale of Ajj and ui over the domain. We

have found this to be important as the unscaled measure tends to be oversensitive to such effects.
Notice that after solving (3.1) and (3.4), finding ∂ui/∂Ajj for all j is a trivial computation.

3.2. Theory for symmetric M-matrices. To gain some insight into the results obtained from
sensitivity analysis we analyze the specific case where A is a symmetric diagonally dominant M -matrix.
A is defined to be an M -matrix [30] if:

• Aij ≤ 0 ∀i 6= j,
• A is nonsingular,
• A−1 ≥ O (all entries of A−1 are non-negative).

In addition, we assume that A has constant diagonal entries, a case that for example arises when
discretizing constant coefficient elliptic problems on uniform grids. Since A is symmetric, u = v, in
the previous subsection. Then,

Si
j = −Ajj

ui
u2

j

= − Ajj

(A−1)ii
((A−1)ij)2.

The heuristic we use for determining whether two variables are strongly coupled is given by:

|Si
j |

|Si
max|

≥ α, (3.9)

where |Si
max| = max

j
|Si

j | and α is a user given or adaptively varied threshold, α ∈ (0, 1]. Let us first

determine |Si
max|.

|Si
max| = max

j

|Ajj |
(A−1)ii

((A−1)ij)2

=
|Aii|

(A−1)ii
max

j
((A−1)ij)2,

since we are assuming A is an M -matrix with constant diagonal coefficients, and hence, Ajj = Aii.
Furthermore, since A is a diagonally dominant M -matrix, by Proposition 4.6 of [21],

max
j

(A−1)ij = (A−1)ii.
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Hence, in this case the maximum occurs along the diagonal, and

|Si
max| = |Si

i | = |Aii|(A−1)ii ∀i.

We note that our criteria is almost identical to the coarsening criteria used in [6] for this very specific
case. This can be seen from noting that

|Si
j | =

Ajj

(A−1)ii
((A−1)ij)2

=
‖(A−1)ijej‖2A
‖(A−1)i‖2A

,

and comparing with the strength of connection criterion in Theorem 1 of [6]. Here ‖ · ‖A denotes the
energy norm with ‖w‖2A = (Aw,w) and (·, ·) is the Euclidean inner product. Our criteria can now be
further simplified to:

((A−1)ij)2 ≥ α((A−1)ii)2

which sets a lower bound on the values of (A−1)ij for variable j to be considered strongly coupled to
variable i. For a particular solution variable, xi, let us set S = {1, 2, · · · , n} and define subsets S1 and
S2 of S, such that

S1 = {j :
√

α(A−1)ii ≤ (A−1)ij ≤ (A−1)ii},

and S2 = S \ S1. Then, the componentwise solution, xi, of (2.1) can be written as

xi =
∑
j∈S1

(A−1)ijfj +
∑
j∈S2

(A−1)ijfj .

Since A is a M -matrix, the coefficients A−1
ij are all non-negative. It now becomes clear from the

representation above that the solution at xi depends strongly on the values of fj through the coefficients
(A−1)ij when j ∈ S1 and weakly when j ∈ S2. Thus, for a symmetric M-matrix, we expect the measure
of this paper to determine strong couplings to align with the heuristic followed in [6]. [TODO: Bobby,
does this work? I wanted to be sure that the point of this analysis is clear so I added this sentence.
Note again that I believe this assumes that we have a smooth f as detailed earlier.Tim, I intended
the analysis is to show atleast in the M matrix case why the measure makes sense. My point was not
really to show equivalence with their measure. In fact, this analysis explains why their measure makes
sense! So I guess I would not really add that last sentence unless you really think it belongs there.]

3.3. Diagonal Scaling. Traditional AMG methods have trouble with diagonal scaling. In this
subsection we show that our measure is invariant with respect to diagonal scaling of the matrix A.
The proof is simple and follows along similar lines to that outlined in Theorem 1 of [6]. Note that we
do not require A to be symmetric.

Lemma 3.1. Let D be a diagonal n×n matrix and Ã = DAD. Let Ãũ = ei and Ãtṽ = ei. Define
the sensitivity measures S̃i

j and Si
j for Ã and A. Then, S̃i

j = Si
j.

Proof. It is easy to see that ũi = D−2
ii ui, ũj = D−1

jj D−1
ii uj , and ṽj = D−1

jj D−1
ii vj . Then,

S̃i
j = − Ãjj

ũi
ṽj ũj

= −
D2

jjAjj

D−2
ii ui

(D−1
jj D−1

ii vj)(D−1
jj D−1

ii uj)

= −Ajj

ui
vjuj

= Si
j .
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3.4. Local Sensitivity Analysis (LSA). Clearly, localization of such a method is necessary for
computational viability. The goal is to create a sufficiently efficient algorithm while uncovering the
desired information needed to determine strong couplings.

We define the distance 1-neighborhood of i to be the index set Ci = {i} ∪ {j | Aij 6= 0} with
cardinality m ≤ n. Corresponding to this 1-neighborhood we assemble a local m ×m submatrix Ai

formed by removing from A all rows j and columns j if j does not belong to Ci. More formally, form
the n×m matrix,

Pi = [ej1ej2 · · · ejm
],

where ejk
, k = 1, 2, · · ·m, jk ∈ Ci, are the canonical column basis vectors with all zeros except for a 1

in location jk. Then

Ai ≡ P t
i APi.

Sensitivity analysis is performed on the local linear system,

At
iu = ei, (3.10)

where it is assumed that Ai is non-singular. [TODO: Bobby, should this either be AT
i or v to

correspond to the notation in (3.1) and (3.4)?Tim, notice the P t has disappeared. Does that look
right to you? Thanks for catching this one]

We refer to this local process as Local Sensitivity Analysis (LSA). We make note of three important
points.

• It is clearly possible to further generalize by considering distance 2− or distance 3− neighbor-
hoods of i but this adds computational cost and was found to be unnecessary in our experi-
ments. The information obtained by LSA on 1− neighborhoods was found to be sufficient for
our purposes.
• For constant coefficient problems it is obviously sufficient to perform LSA on a small set of

local linear systems (one interior system and one local system for each boundary) making the
cost negligible. For variable coefficient systems LSA needs to be performed for all variables.
In such cases the cost of LSA is similar to what a block Jacobi smoothing operation might
incur.
• LSA is an embarrassingly parallel operation as it is involves solving multiple decoupled local

systems, which involves no interprocessor communication.

Using LSA in the local manner described we show how we can uncover strong couplings in a wide
variety of problems. We now focus on using such knowledge to create block smoothers algebraically.
The next section motivates and develops such a method.

3.5. Two model examples. While the ideas of the previous section can be applied to scalar
and system PDEs and also nonsymmetric problems, we focus on two classical problems in multigrid
analysis. This section motivates the use of such ideas for the block smoothing algorithm to follow.

3.5.1. Isotropic Laplacian. Consider the Laplacian equation

uxx + εuyy = 0 (3.11)
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on a square grid, discretized with a standard 9-point stencil. If variable i be in the interior of the
domain, then

Ai =



1 − 1
8 0 − 1

8 − 1
8 0 0 0 0

− 1
8 1 − 1

8 − 1
8 − 1

8 − 1
8 0 0 0

0 − 1
8 1 0 − 1

8 − 1
8 0 0 0

− 1
8 − 1

8 0 1 − 1
8 0 − 1

8 − 1
8 0

− 1
8 − 1

8 − 1
8 − 1

8 1 − 1
8 − 1

8 − 1
8 − 1

8
0 − 1

8 − 1
8 0 − 1

8 1 0 − 1
8 − 1

8
0 0 0 − 1

8 − 1
8 0 1 − 1

8 0
0 0 0 − 1

8 − 1
8 − 1

8 − 1
8 1 − 1

8
0 0 0 0 − 1

8 − 1
8 0 − 1

8 1


,

which also results in variable i have 9 distance 1-neighbors. As discussed in Section 3.2, the largest
Si

j will occur when j = i. Again, we scale these values such that the largest Si
j = 1. We report these

values in the stencil form below:  0.033 0.052 0.033
0.052 1.0 0.052
0.033 0.052 0.033


as a compact notation for reading Si

j for any j in the 1-neighborhood of i. Explicitly the stencil encodes
Si

j = 0.052 for the variables j that are to the north, south, east and west of variable i. Similarly, the
variables to the northwest, northeast, southeast and southwest of i produce Si

j = 0.033. Such results
would be expected by any algorithm proposing to yield information regarding strength for this problem.

3.5.2. Anisotropic Laplacian. Now, let us set ε = 1/100 in (3.11). Now, if variable i is in the
interior of the domain, then

Ai =



8.0 1.9 0 −3.9 −1 0 0 0 0
1.9 8.0 1.9 −1 −3.9 −1 0 0 0

0 1.9 8.0 0 −1 −3.9 0 0 0
−3.9 −1 0 8.0 1.9 0 −3.9 −1 0
−1 −3.9 −1 1.9 8.0 1.9 −1 −3.9 −1

0 −1 −3.9 0 1.9 8.0 0 −1 −3.9
0 0 0 −3.9 −1 0 8.0 1.9 0
0 0 0 −1 −3.9 −1 1.9 8.0 1.9
0 0 0 0 −1 −3.9 0 1.9 8.0


.

Again we report, in stencil form, Si
j for all j in the neighborhood of i where the values are scaled such

that the largest Si
j = 1:  0.010 0.237 0.010

0.049 1.0 0.049
0.010 0.237 0.010


Again, the strongest coupling to the variable i is itself. However, this problem demonstrates much
stronger coupling to the north and south. Much weaker connections exist to the east, west and
diagonal connections, which is expected for this problem. Note, the original stencil is of the type
that has positive and negative off-diagonals, which can pose more troublesome to AMG’s traditional
measure of strength. [TODO: Bobby, can you check this as I have changed to the PDE rather than
talking about discretizing with square and rectangles. Does this work?]

More examples will be considered later in this paper in the context of using such a measure of
strength to produce an adaptive algebraic smoother for a variety of applications that include system
PDEs and nonsymmetric problems.
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3.6. Algorithm for identifying strongly coupled blocks. The pseudo code contained in
Algorithm 1 presents the steps followed to determine the blocks for smoothing for the section to follow.
For the example of the anisotropic Laplacian using this algorithm we are able to form blocks which
correspond to the lines which a line smoother would use when α < 0.237 (see section on numerical
experiments). Heuristically we have determined that setting α = 0.1 provides good results for most
cases. In a fully adaptive algorithm (as we will describe in a related publication) α can be varied to
obtain a whole class of smoothers for a given problem.

Initialize:
n←− 1 /* n: indexes the number of blocks */
B ←− ∅ /* B: the set of blocks */
Bn ←− ∅ /* Bn: n-th block being formed */
Bnew ←− {1} /* Bnew: set of new indices to add to block Bn */
F ←− ∅ /* F: set of strong connections to indices in Bn */
S ←− {2, · · · , n}
Iterate:
while S! = ∅ do /* While S contains unprocessed indices */

for j ∈ Bnew do
for k ∈ (Cj \ {k}) ∩ S do /* 1-neighborhood of j */

if Sj
k ≥ α then /* if strongly connected */

F ←− F ∪ {k}
S ←− S \ {k}

end
end

end
Bn ←− Bn ∪Bnew /* Add new indices to Bn */
if F ! = ∅ then

Bnew ←− F
F ←− ∅

else
B ←− B ∪ {Bn}
n←− n + 1
Bn ←− ∅
F ←− ∅
Bnew ←− {head(S)} /* head(S) refers to next element in S */

end
end

Algorithm 1: Determining Blocks for Smoother

3.7. Forming an Adaptive Algebraic Smoother. The goal of this section is to utilize the
information available from LSA to form a smoother. The algebraic nature of our methods means we
are concerned with an algebraic sense of smoothness and not geometric smoothness. However, we will
see that in some cases the algebraic and geometric sense of smoothness do coincide. In particular,
for the purposes of smoothing, strongly connected variables will be grouped together to form blocks.
These blocks will then be used to define a stationary block iterative scheme. We assume that we
have been able to identify groups of strongly connected variables using sensitivity analysis . Grouping
these variables together into a block is essentially a reordering of the matrix A. Let P denote a n× n
permutation matrix that reorders A so that blocks of strongly coupled variables are grouped together.
Then the reordered matrix is given by P tAP . For simplicity of notation, in the rest of this section we
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will use A to denote the reordered matrix P tAP also. Now, let

A =


A11 A12 · · · A1s

A21 A22 · · · A2s

· · · · · · · · · · · ·
As1 · · · As,s−1 Ass


where Aij , 1 ≤ i, j ≤ s are now s2 matrix subblocks of size qi × qj . Then,

∑s
i=1 qi = n. A block

iterative stationary method can now be defined by a splitting, A = M − N , where M is invertible,
which leads to the stationary iteration:

xk+1 = M−1Nxk + M−1f .

The vectors xk+1, xk, and f are partitioned to match the block partitioning of the matrix A. The
iteration given above converges if and only if ρ(M−1N) < 1.

An example of a block iteration is the block Gauss-Seidel method defined by the splitting:

M =


A11 0 · · · 0
A21 A22 · · · 0
· · · · · · · · · · · ·
As1 · · · As,s−1 Ass


and N = M − A. When s = n, then the subblocks are of size one and the block iterations reduces to
the standard lexicographic Gauss-Seidel iteration. The numerical results presented in this paper were
all performed with block Gauss-Seidel iterations, though once the block partitioning is defined we are
free to choose any suitable block iterative process.

However, an important subtlety arises: we must be able to identify variables for which block
smoothing is not necessary. Heuristically, such variables are sufficiently “strongly connected” to them-
selves; the isotropic Poisson operator is a motivating example for such problems. To illustrate this
we return to the examples in the previous section. For α > 0.237 we see that both the anisotropic
and isotropic systems view only variable i as being strongly connected to itself. In this case we set
the block size to be 1, i.e. no block smoothing is required. We note that this would be a perfectly ac-
ceptable choice for the anisotropic system if semi-coarsening is used within a multigrid algorithm [27].
On the other hand, if α lies in (0.052, 0.237), then the isotropic system will still indicate that variable
i is strongly connected only to itself, while the anisotropic system will indicate strongly connected
variables to the north and south of i.

4. Numerical Experiments. This section reports numerical results for the algebraic block
smoothing algorithm introduced in Section 3.7. For each experiment, this new method’s performance
will be compared to that of pointwise Gauss-Seidel.

Unless otherwise stated α = 0.1. Unless otherwise stated, we solve the homogeneous problem
(f = 0) with a random initial vector, x0, with entries between 0 and 1. A convergence factor which is
the ratio

(
‖rk‖2/‖rk−1‖2

)
for each iteration k is also included.

Keep in mind that such methods can be used to complement a multigrid method that dampens
remaining components of the error with a coarse-grid correction process. This paper focuses on such
methods as linear solvers of themselves and in some cases, we will see that the methods succeed as
such a solver.

In the numerics to follow, we look at three main classes of problems: scalar PDEs, coupled system
PDEs and linear systems related to the PageRank vector used by search engines such as Google.
Within these classes of problems, we will consider nonsymmetric systems. Note that system PDEs
and nonsymmetric linear systems are traditionally difficult for multigrid methods to solve efficiently.
It is notable that the smoothers of this paper can be extended to such problems without adjustment
to the algorithm.
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Fig. 4.1. Lines created by adaptive algebraic smoother for (a) anisotropic Poisson problem and (b) PDE defined
in (4.1) with anisotropies varying in four regions of the domain.

4.1. Scalar Partial Differential Equations. To begin, we demonstrate the ability of such a
method to produce blocks desirable for scalar PDEs.

4.1.1. Isotropic Laplacian. We begin by considering the isotropic Laplacian again from (3.11)
with ε = 1. As stated in Section 3.5.1, Si

j for all j in the neighborhood of i where the values are scaled
such that the largest Si

j = 1, reported in stencil form is: 0.033 0.052 0.033
0.052 1.0 0.052
0.033 0.052 0.033


With α = 0.1, each point is considered strongly coupled only to itself. As such, the method produces
a pointwise Gauss-Seidel method, which would be expected for this problem.

4.1.2. Anisotropic Laplacian. We now consider system (3.11) for ε = 1/100. As earlier in the
paper, reporting, in stencil form, Si

j for all j in the neighborhood of i where the values are scaled such
that the largest Si

j = 1:  0.010 0.237 0.010
0.049 1.0 0.049
0.010 0.237 0.010


While the strongest coupling to the variable i is itself, a strong connection also exists to the north
and south. Finding the strength of couplings in this way for both interior and boundary variables,
creates the lines seen in Figure 4.1 (a). As such, the method creates the line smoother considered
a standard option for such a problem. We see in Table 4.1 how the method compares to pointwise
Gauss-Seidel. For such a problem, a multigrid method would overcome the slower convergence of
pointwise Gauss-Seidel with semi-coarsening.

4.1.3. Varying anisotropy within the domain. We next turn to an example from Section 1.3
in [25]. The underlying PDE is:

−(aux)x − (buy)y + cuxy = f(x, y) (4.1)

defined on a unit square with full Dirichlet boundary conditions. The problem is defined such that
a = b = 1 everywhere except in the upper left quarter of the unit square where b = 103 and the lower
right quarter where a = 103. To split the domain into four regions with varying anisotropies, c = 0
except in the upper right quarter where c = 2.
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Pointwise Block
‖r‖ Conv. Fac. ‖r‖ Conv. Fac.

172.42880 1.00000 172.42880 1.00000
37.17199 0.21558 9.01827 0.05230
11.27923 0.30343 0.60601 0.06720
5.05070 0.44779 0.05297 0.08740
3.21387 0.63632 0.00659 0.12440

Table 4.1
Equation ( 3.11) on a 35 × 35 rectangular grid with full Dirichlet boundary conditions, discretized with bilinear

quadrilateral elements, with ε = 1/00. Algebraic block smoothing created 33 blocks.

Pointwise Block
‖r‖ Conv. Fac. ‖r‖ Conv. Fac.

1.704e+007 1.00000 1.704e+007 1.00000
2.580e+006 0.15138 2.908e+003 0.00017
7.049e+005 0.27318 9.142e+002 0.31444
3.736e+005 0.53000 6.060e+002 0.66285
2.666e+005 0.71357 4.764e+002 0.78607

Table 4.2
Pointwise and block smoothing results for PDE given in 4.1 defined with full Dirichlet boundary conditions. Alge-

braic block smoothing created 285 blocks.

The discretized system is formed using a standard 5-point stencil and a (left-oriented) 7-point
stencil for the diffusion and mixed derivative points of the PDE, respectively. As a result of these
varying coefficients, the system is isotropic in the lower left quarter of the unit square but strongly
anisotropic in the remaining quarters. The direction, however, of the anisotropy varies in the remaining
three quarters of the unit square with the direction of strong connection lying in the x, y and diagonal
directions for the upper left, lower right, and upper right quarters, respectively. The varying directions
of these anisotropies are reflected in the smooth error produced after four iterations of pointwise Gauss-
Seidel seen in Figure 4.2 (a). Note that the numerics use the discretized system which included both
A and f were supplied by Klaus Stüben.

In Table 4.2, pointwise Gauss-Seidel converges toward the solution. However, the adaptive alge-
braic smoother performs much better particularly in the first iteration which is important for multigrid
methods. The adaptive algebraic smoother forms blocks that geometrically follow the anisotropies
within each region as seen in Figure 4.1 (b), which results in geometrically smooth error, as seen in
Figure 4.2 (b), suggesting its usefulness for geometric multigrid methods. Note that the largest error
occurs in the quarter of the domain that is isotropic which is where the block smoother chooses only
pointwise smoothing.

4.1.4. Discontinuous coefficients. We next turn to an example with strongly discontinuous
coefficients. The following model problem comes from Section 8.4.1 in [25]. The underlying diffusion
problem is:

−(aux)x − (buy)y = f(x, y), (4.2)

on a unit square with discontinuous coefficients a > 0 and b > 0 as defined in Figure 4.3. Note that
f(x, y) = 0 except at the points (0.25, 0.25), (0.5, 0.5) and (0.75, 0.75) where f(x, y) = 10. The problem
has the following Dirichlet boundary conditions

u = 1 for x ≤ 0.5, y = 0 and x = 0, y ≤ 0.5; otherwise u = 0.

The system is discretized using a standard 5-point stencil on a regular grid with a mesh of h = 1/N .
The numerics use the discretized system supplied by Klaus Stüben.
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Fig. 4.2. Algebraically smooth error after four iterations of (a) pointwise smoother and (b) block smoother for the
scalar PDE (4.1).

region 1: a = 10−3, b = 10−3

region 2: a = 10+3, b = 10−3

region 3: a = 10−3, b = 10+3

region 4: a = 1, b = 1

Fig. 4.3. Distribution of discontinuous coefficients in (4.2).

In Table 4.3, pointwise Gauss-Seidel converges toward the solution. However, the adaptive alge-
braic smoother performs much better particularly in the first iteration which is important for multigrid
methods. Further, the block smoother produces geometrically smooth error as seen in Figure 4.4 sug-
gesting its usefulness for geometric multigrid methods. However, it should be noted that 2, 28 and 1
blocks contain 47, 49 and 192 variables, respectively with the remaining variables undergoing pointwise
smoothing.

The results of this linear system foreshadow the potential need to alter α. These tests involved
solving a linear system for each block, and the numerical results of this paper utilized a direct solve.
As such, if the size of the largest block for α = 0.1 is undesirable, several options exist to reduce the
computational cost of the block smoother. First, such large blocks could be attacked as a smaller linear
systems and solved iteratively. Alternatively, the adaptive algebraic smoother could break large blocks
into overlapping blocks where the amount of overlap can result in better convergence [5]. Another
option is to alter α in (3.9). While here we will increase α, an algorithm could start with a relatively
large α and adaptively reduce this size of this threshold until either blocks become unsuitably large or
a desired level of convergence results. Here, again, we will raise α = 0.24995. This value of α results in
2,533 blocks with 47 blocks containing 2 variables and 28 blocks containing 49 variables. Note that the
block of 192 no longer remains but became a collection of smaller blocks. While the larger α results
in slower convergence, especially in the second iterate, the method still performs well in comparison
to pointwise Gauss-Seidel. It should be noted that α ≤ 0.24994 results in the large 192 sized block
remaining and α ≥ 0.25 results in only a few blocks that contain more than one point. The next
example considers another application where adaptively altering α would serve advantageous.
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Pointwise Block
‖r‖ Conv. Fac. ‖r‖ Conv. Fac.

1.14838e+008 1.00000 1.14838e+008 1.00000
1.69170e+007 0.14731 1.71013e+004 0.00015
3.86860e+006 0.22868 3.78435e+003 0.22129
1.65386e+006 0.42751 1.72486e+003 0.45579
1.01471e+006 0.61354 1.07186e+003 0.62142

Table 4.3
Pointwise and block smoothing results for PDE given in (4.2) defined with strongly discontinuous coefficents.

Algebraic block smoothing created 2342 blocks with α = 0.1.

0.2
0.4

0.6
0.8 0.2

0.4
0.6

0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.2
0.4

0.6
0.8 0.2

0.4
0.6

0.8

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(a) (b)

Fig. 4.4. Algebraically smooth error after four iterations of (a) pointwise smoother and (b) block smoother for the
scalar PDE (4.2) with strongly discontinuous coefficients with α = 0.1 for the adaptive block smoother.

4.1.5. Oil reservoir modeling system. The following linear system (consisting of both A
and f) is from the Harwell-Boeing collection available from Matrix Market (http://math.nist.gov/
MatrixMarket/). It is the SHERMAN2 matrix which comes from a three dimensional thermal simula-
tion with steam injection (from the description on the website) and is one of the oil reservoir simulation
challenge matrices from Andy Sherman. The matrix A is a 1080 × 1080 real non-symmetric matrix
with 23094 non-zero entries. It is not diagonally dominant and has a condition number estimate of
1.4e + 12. Gauss-Seidel diverges for this problem due to the lack of diagonal dominance. Table 4.5
shows the convergence history as we vary the threshold, α, from 0.2 to 0.05. For α = 0.2 the block
iteration does not converge at all, while for α = 0.1 we obtain marginally good convergence of the
smoother. By then lowering α even further to 0.2 we are able to obtain good convergence for this
system. Table 4.6 shows that as α is varied the number and size of the blocks can vary considerably.
This example is not meant to imply that larger block sizes necessarily lead to better convergence rates.
Counter examples are provided by Varga[30] where this is not the case. However, larger block sizes
can lead to better convergence rates as this experiment demonstrates. Furthermore, this example illus-
trates how α might be reduced by an adaptive algorithm, which should balance convergence and work
requirements in the resulting block iterative smoother. Research in multigrid methods that construct
multigrid components based on measures that strive to balance convergence and work include [9] and
[20].
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Pointwise Block
‖r‖ Conv. Fac. ‖r‖ Conv. Fac.

1.14838e+008 1.00000 1.14838e+008 1.00000
1.69170e+007 0.14731 4.31595e+006 0.03758
3.86860e+006 0.22868 9.89439e+005 0.22925
1.65386e+006 0.42751 4.55776e+005 0.46064
1.01471e+006 0.61354 3.10844e+005 0.68201

Table 4.4
Pointwise and block smoothing results for PDE given in (4.2) defined with strongly discontinuous coefficents.

Algebraic block smoothing created 2342 blocks with α = 0.24995.

α = 0.2 α = 0.1 α = 0.05
‖r‖ Conv. Fac. ‖r‖ Conv. Fac. ‖r‖ Conv. Fac.

1.74403e+08 1.00000e+00 1.74403e+08 1.00000e+00 1.74403e+08 1.00000e+00
1.74810e+06 1.00233e-02 1.74239e+06 9.99058e-03 1.31409e+05 7.53480e-04
1.66690e+05 9.53548e-02 1.69416e+05 9.72317e-02 3.63905e+02 2.76924e-03
6.23284e+04 3.73918e-01 1.68578e+04 9.95054e-02 2.98207e+00 8.19464e-03
1.10653e+06 1.77532e+01 1.71429e+03 1.01691e-01 1.67902e-01 5.63039e-02

Table 4.5
Convergence of block smoothers for SHERMAN2 problem with varying α.

4.2. Systems of Partial Differential Equations. System PDEs are traditionally difficult prob-
lems for algebraic multigrid methods. This section demonstrates the ability of the adaptive algebraic
smoother to define strong couplings for such problems and its affect on the block smoothing iteration.
For simplicity the examples presented in this section are 2× 2 coupled systems of PDEs where AMG
is known to have trouble.

4.2.1. Model systems. In this section, we consider two model systems where the anisotropy in
each variable differs. These systems were provided by Jim E. Jones [14]. In order to introduce the
system of interest, define

−4ε:x ≡

 −1
−ε 2 + 2ε −ε

−1

 and −4ε:y ≡

 −ε
−1 2 + 2ε −1

−ε

 .

Therefore, this section considers the linear system:(
−4ε:x kI
−kI −4ε:y

) (
u
v

)
=

(
f
g

)
. (4.3)

For the numerics to follow, we will set ε = 0.01.
In the first system, the diagonal blocks have the 5-point anisotropic Laplacian with ε = 0.01.

Again, the direction of the anisotropy differs between the blocks. In order to have a coupled system,
we set k = 0.01.

In Table 4.7, pointwise Gauss-Seidel converges toward the solution. However, the adaptive alge-
braic smoother performs much better both in early and later iterations. The system is 2178 × 2178
with a total of 66 blocks where each block contains 33 variables.

In the second system, we keep ε = 0.01. However, we create a large off-diagonal element by setting
k = 100. In fact, the linear system is no longer (and far from being) diagonally dominant. The
adaptive algebraic smoother’s success on problems difficult for pointwise Gauss-Seidel is clearly seen in
this example. In Table 4.8 we see clear divergence for pointwise Gauss-Seidel. The adaptive algebraic
smoother performs with low convergence rates. Again, the system is 2178×2178. The block smoother
chooses 1089 blocks with each being a 2× 2 block.
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α Number of blocks Max. block size Min. block size
0.2 292 44 1
0.1 268 45 1
0.05 241 150 1

Table 4.6
Block statistics for SHERMAN2 problem with varying α.

Pointwise Block
‖r‖ Conv. Fac. ‖r‖ Conv. Fac.

33.43388 1.00000 33.43388 1.00000
4.91278 0.14694 0.06436 0.00193
1.32823 0.27036 0.02394 0.37189
0.73113 0.55045 0.00427 0.17855
0.53874 0.73686 0.00204 0.47660

Table 4.7
For α = 0.1, algebraic block smoothing created 66 blocks for ε = 0.01 and k = 0.01 in system (4.3).

4.2.2. Linear elasticity. Next, we apply the adaptive algebraic block smoothing method to the
2D linear elasticity system

uxx +
1− β

2
uyy +

1 + β

2
vxy = f1,

1 + β

2
uxy +

1− β

2
vxx + vyy = f2,

(4.4)

where u and v are displacements in the x and y directions, respectively. Throughout the numerical
tests, we employ the value β = 1/2, which yields the Poisson ratio ν = β/(1 + β) = 1/3. The problem
has free boundaries, except on the left where u = v = 0. We discretize (4.4) with bilinear finite
elements on a uniform nx × ny rectangular array of cells with spacing hx × hy. The actual domain
(nxhx by nyhy) varies in size, depending on the values of nx, ny, hx, and hy.

We begin by discretizing with square elements (hx = 1/32 and hy = 1/32) on a 32× 32 grid. We
see from Table 4.9 that the adaptive algebraic smoother has efficient dampening in the early iterations
which again bodes well to its role in the multigrid process. It should be noted, however, that the
average block size is 17 with 29, 30 and 1 blocks of sizes 32, 33, and 194, respectively; the remaining
blocks consisted of a single variable.

We next stretch the grid and consider linear elasticity discretized with stretched rectangular ele-
ments (hx = 1/32 and hy = 1/320) on a 32× 32 grid. We see again that the method perform well in
the early iterations. In this case, the method also performs well in later iterates. Note that the block
smoother has 62 and 1 blocks of sizes 33 and 66, respectively with the remaining blocks consisting of
a single variable.

Next, the method is tested on the single-element thick 2-D plane-stress cantilever beam discretized
with square elements on a 64× 1 grid. The adaptive algebraic smoother created 5 blocks with 256 of
the total 260 variables residing in a single block. As such, the method served essentially as a direct
solver and the block smoother converged in a single iterate. Therefore, α was raised to 0.3 which
produces the results in Table 4.11. In this case more (and much smaller) blocks are created. Note that
the linear system is 256 × 256 so many of the blocks consist of only one variable. More specifically,
the blocks consist of 62 blocks containing 2 variables and a single 8 × 8 block. The remaining 128
degrees of freedom have pointwise smoothing. We see from the iterates that after 4 smoothing steps,
the residual is approximately half that of the residual resulting from pointwise Gauss-Seidel.

We see similar behavior for the single-element thick 2-D plane-stress cantilever beam with stretched
rectangular elements with a 10 : 1 aspect ratio. For this problem, α = 0.1 results again in a large
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Pointwise Block
‖r‖ Conv. Fac. ‖r‖ Conv. Fac.

2.68835e+003 1.00000e+000 2.68835e+003 1.00000
2.89686e+009 1.07756e+006 2.65285e-001 0.00010
1.06165e+014 3.66484e+004 2.61072e-005 0.00010
3.94519e+018 3.71608e+004 2.56705e-009 0.00010
1.47601e+023 3.74130e+004 2.51757e-013 0.00010

Table 4.8
For α = 0.1, the adaptive algebraic smoother created 1089 blocks for ε = 0.01 and k = 100 in system (4.3).

Pointwise Block
‖r‖ Conv. Fac. ‖r‖ Conv. Fac.

98.34003 1.00000 98.34003 1.00000
15.10429 0.15359 6.68950 0.06802
4.26136 0.28213 1.39356 0.20832
1.89268 0.44415 0.62380 0.44763
1.19331 0.63049 0.43789 0.70197

Table 4.9
Linear elasticity discretized with square elements (hx = 1/32 and hy = 1/32) on a 32 × 32 grid. Algebraic block

smoothing created 126 blocks.

block of of size 256 (of the total 260 variables). Raising α to 0.3 results in 129 blocks producing the
numerics in Table 4.12. Of the 126 total blocks formed, 124 and 1 blocks contained 2 and 8 variables,
respectively with the remaining 4 blocks containing a single variable. Note that pointwise Gauss-Seidel
performs much better for the first iteration but then degrades. This was true over multiple runs with
various random initial guesses.

4.3. Linear Systems related to PageRank. Finally, we consider linear systems associated
with search engine analysis and the PageRank algorithm. At the core of the PageRank algorithm is a
Markov Chain model of internet activity. The states of the Markov process are web pages. To form
the transition matrix, some variables are defined. Let W be a connected network of n web pages. Let
G be the n×n adjacency matrix of W , that is, gij is 1 if there is a hyperlink to page i from page j and
0 otherwise. Note, G is a sparse matrix. Let cj and ri be the column and row sums of G, respectively.
That is,

cj =
∑

1≤i≤n

gij , ri =
∑

1≤j≤n

gij

Then ck and rk are the out-degree and in-degree of the web page corresponding to row k of G. (We
will call this web page k.)

To form the transition matrix M that is fundamental to the Markov process, a probability of going
from page i to page j must be defined. (Note, we will form a column stochastic matrix.) Define the
matrix H where

hij =
{

gij/ci if ci 6= 0,
gij if ci = 0.

Note that H is not a transition matrix as it contains zero columns due to the presence of dangling
nodes, which have an out-degree of 0.

Let v = 1
n1. Also, define d such that

di =
{

1 if ci = 0,
0 otherwise.
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Pointwise Block
‖r‖ Conv. Fac. ‖r‖ Conv. Fac.

616.50672 1.00000 616.50672 1.00000
138.17378 0.22412 34.59954 0.05612
42.00994 0.30404 2.54766 0.07363
16.60365 0.39523 0.27511 0.10799
8.67694 0.52259 0.10852 0.39445

Table 4.10
Linear elasticity discretized with stretched rectangular elements (hx = 1/32 and hy = 1/320) on a 32 × 32 grid.

Algebraic block smoothing created 129 blocks.

Pointwise Block
‖r‖ Conv. Fac. ‖r‖ Conv. Fac.

17.88577 1.00000 17.88577 1.00000
1.89137 0.10575 2.21025 0.12358
0.87261 0.46136 0.75029 0.33946
0.55868 0.64024 0.35001 0.46650
0.41424 0.74147 0.21359 0.61025

Table 4.11
Single-element thick 2-D plane-stress cantilever beam discretized with square elements on a 64×1 grid. For α = 0.3,

the algebraic block smoothing created 189 blocks.

Therefore, S = H + vdT . Now, the transition matrix G ≡ αS + (1 − α)v1T , where α = 0.85, which
represents the fraction of time that a random walk through the network follows a link available on a
web page. The matrix G is called the Google matrix.

Therefore, the steady state vector of the Markov process is Gx = x. In Google’s case, a stochastic
x gives the PageRank with the largest element of x, say xi, corresponding to the web page (web page
i in this case) with the highest PageRank. The second largest element of x corresponds to the web
page with the second highest PageRank and so on.

In this paper, we look at a corresponding linear system which preserves the sparsity of G. In
particular, we are interested in the system:

(I − αH)y = v. (4.5)

Note, I − αH is a nonsingular M-matrix. After solving this linear system, the PageRank vector x is
then computed by letting x = y/y1T . For a more thorough discussion on the properties of this matrix
and for a proof that such a process produces the PageRank vector, see [17].

This paper will restrain from applying the method of this paper to a large set of sample networks
downloaded from [28]. The purpose of this paper is to demonstrate the effectiveness of the method for
representative samples of such networks.

Each collection of web pages was created following the guidelines of Kleinberg [16]. The search
engine AltaVista was queried for one or more keywords. Note that when a query consisted of more
than one word, the ‘+’ symbol used to ensure that every page in the network contained the keywords.
The first 200 pages returned by AltaVista form what is called the Root Set. For each page in the
Root Set, the out-links of that page are stored as well as the first 50 in-links, in the order AltaVista
returns them. The Root Set is expanded into the Base Set by including the in-links, and out-links of
the pages in the Root Set. After forming the Base Set, the underlying graph of the network of websites
is constructed. Edges that connect two nodes within the same domain were deleted since they usually
serve navigation purposes. Isolated nodes were also deleted. For more information, see [29, 3].

The first network consisted of 3410 web pages and was formed from the keywords amusement
parks. Algebraic smoothing created 3383 blocks. Most blocks consisted of a single variable. More
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Pointwise Block
‖r‖ Conv. Fac. ‖r‖ Conv. Fac.

125.69600 1.00000 125.69600 1.00000
1.22382 0.00974 8.51119 0.06771
0.90847 0.74233 2.72509 0.32018
0.79502 0.87511 1.27415 0.46756
0.70719 0.88954 0.76593 0.60113

Table 4.12
Single-element thick 2-D plane-stress cantilever beam discretized with rectangular elements on a 64 × 1 grid.

Stretched elements use a 10 : 1 aspect ratio. For α = 0.1, the algebraic block smoothing created 126 blocks.

Pointwise Block
‖r‖ Conv. Fac. ‖r‖ Conv. Fac.

2.531849 1.00000 2.531849 1.00000
1.270078 0.50164 1.295928 0.51185
0.514680 0.40523 0.518006 0.39972
0.040481 0.07865 0.025487 0.04920
0.022789 0.56295 0.006628 0.26006
0.015676 0.68787 0.001816 0.27392
0.011209 0.71504 0.000513 0.28235
0.008079 0.72081 0.000149 0.29073
0.005834 0.72208 0.000043 0.29113
0.004214 0.72237 0.000013 0.29402
0.003045 0.72244 0.000004 0.29759

Table 4.13
Algebraic block smoothing applied to linear formulation of PageRank on a network with 3410 web pages. The

algorithm chose 3383 blocks.

notably, given the improvement in convergence, the method chose 13, 4, and 2 blocks of size 2, 3, and
4, respectively. Such results, seen in Table 4.13 underscore the method’s ability to judiciously select
blocks. Moreover, a relatively small number of blocks contain more than a single variable but result
in a marked decrease in the rate of convergence.

The second network consisted of 5354 web pages formed from the keyword blues. Algebraic
smoothing created 5333. Again, most blocks consisted of 1 variable. This time 13, 2, and 1 blocks are
formed of size 2, 3, and 5, respectively. Table 4.14 again reflects the increased efficiency resulting from
the method.

We do not see the same level of speed-up on all networks. For instance, the network formed from
the keywords automobile industries led to the results in Table 4.15. Note, only 4 blocks consisted
of more than one variable. More specifically, 3 blocks consisted of two variables and one block consisted
of 6 variables. Note that the residual is lower on the last iterate but the asymptotic convergence rate,
while better, is not significant.

This section underlines that ability of the algebraic block smoothing method of this paper to be
applied successfully to nonsymmetric linear systems.

5. Conclusions and Future Work. This paper presented a new method of adaptively and
algebraically constructing smoothers based on LSA for multigrid methods. As presented, the method
can be used in the context of both geometric and algebraic multigrid methods. Current research
includes work on implementing LSA into traditional AMG for the purposes of widening the scope of
problems it can solve effectively.

Numerical results of this paper reflect the seamless way the adaptive algebraic smoother can
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Pointwise Block
‖r‖ Conv. Fac. ‖r‖ Conv. Fac.

Pointwise Block
‖r‖ Conv. Fac. ‖r‖ Conv. Fac.

2.45576 1.00000 2.45576 1.00000
0.69123 0.28147 0.71166 0.28979
0.07483 0.10826 0.02998 0.04212
0.04167 0.55683 0.00696 0.23208
0.02741 0.65785 0.00194 0.27946
0.01905 0.69485 0.00059 0.30205
0.01348 0.70761 0.00018 0.31228
0.00960 0.71249 0.00006 0.31750
0.00686 0.71486 0.00002 0.32013

Table 4.14
Algebraic block smoothing applied to linear formulation of PageRank on a network with 5354 web pages. The

algorithm chose 5333 blocks.

Pointwise Block
‖r‖ Conv. Fac. ‖r‖ Conv. Fac.

2.57988 1.00000 2.57988 1.00000
0.12570 0.04872 0.12583 0.04877
0.01807 0.14374 0.01569 0.12468
0.00851 0.47116 0.00573 0.36527
0.00526 0.61831 0.00274 0.47777
0.00362 0.68833 0.00166 0.60456
0.00255 0.70478 0.00108 0.65079
0.00181 0.70921 0.00071 0.66034
0.00129 0.71148 0.00047 0.66209

Table 4.15
Algebraic block smoothing applied to linear formulation of PageRank on a network with 1196 web pages. The

algorithm chose 1188 blocks.

transition between scalar and system PDEs and also how the method is effective on nonsymmetric
linear systems that are not generated from PDEs. The adaptive algebraic method of this paper allows
the smoothing process to adapt to various problem types and to algebraically design such smoothers
to be more effective than pointwise Gauss-Seidel. The simplicity of the method will allow it to be
easily incorporated into existing multigrid codes. The methods provide a powerful tool for adaptively
constructing smoothers and can complement existing research on coarse-grid correction components.

There are several new directions in which the present work can be extended. Firstly, the close
relationship between the strength of coupling measure presented in this paper and the coarsening
measure presented in [6], indicate that it is worthwhile considering whether our measure can be used
as a criteria for coarsening non-symmetric and coupled system PDE systems in AMG. Secondly, LSA
provides a matrix reordering based on strength of coupling as opposed to alternatives based on mini-
mizing fill-in or finding independent subsets. It is worthwhile to consider whether a matrix reordering
scheme based on some combination of these schemes will offer better solver performance in a variety
of applications. Thirdly, the adaptivity of the block iterative smoothers presented here are attractive
in the context of fully adaptive multigrid methods. These are directions we are currently pursuing.

[TODO: Bobby, do we want to include anything on future work? For instance, we have completely
removed the connection of the strong couplings as possibly serving as a replacement to AMG’s strong
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connection. We allude to it which may suffice. Tim, let me know what you think of the last para. We
can keep mum on all or part of it]

6. Acknowledgements. The first author would like to thank Mac Hyman for introducing him
to the topic of sensitivity analysis (SA) and thank both him and Leon Arriola for providing drafts
of their book on sensitivity and uncertainty quantification. Using SA for developing smoothers is the
main idea that this paper introduces. The first author would also like to acknowledge the funding
provided by the LANL LDRD office under LDRD 20050315ER which made this research possible.
The second author thanks the U.S. Department of Energy for partially funding this research through
the U.S. Department of Energy grant DE-FG02-04ER25590. Both authors would like to thank Leon
Arriola for pointing us to the expository article [2] on sensitivity analysis and for many useful and
entertaining discussions. We would like to thank John Ruge for sharing with us his thoughts and
initial attempts at developing ideas in the spirit of LSA for identifying strength in algebraic multigrid
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